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Abstract—One of the most commonly utilized clinical tests per-
formed today is the routine evaluation of peripheral blood smears.
In this paper, we investigate the design, development, and imple-
mentation of a robust color GVF active contour model for per-
forming segmentation using a database of 1, 791 imaged cells. The
algorithms developed for this research operate in Luv color space
and introduce a color gradient and L2E robust estimation into
the traditional GVF snake. The accuracy of the new model was
compared with the segmentation results utilizing a mean-shift ap-
proach, the traditional color GVF snake and several other com-
monly utilized segmentation strategies. The unsupervised robust
color snake with L2E robust estimation was shown to provide re-
sults which were superior to the other unsupervised approaches
and was comparable with supervised segmentation as judged by a
panel of human experts.

Index Terms— Image segmentation, L2E robust estimation, ac-
tive contours, unsupervised segmentation.

I. INTRODUCTION

A. Clinical Background and System Description

DIFFERENTIAL diagnosis is crucial for determining
which medications are appropriate and what level of risk

is justified. As new therapy options become available it has be-
come increasingly important to distinguish among subclasses
of pathologies [40]. The subtle visible differences exhibited by
some malignancies can give rise to a significant number of false
negatives during routine screening. In such cases the diagnosis
can only be rendered after immunophenotyping and/or molecu-
lar or cytogenetic studies have been performed. Unfortunately,
these studies occur too late in the diagnostic pathway to impact
on the frequency of false negatives, significantly. Passing spec-
imens through a reliable image-based screening system, how-
ever, could potentially reduce costs and patient morbidity.

Usually, the cells of interest are the white blood cells (WBC)
including neutrophils, eosinophils, monocytes and lympho-
cytes. The main objective of our studies was to distinguish
among different subgroups of lymphocytes. Three major well-
defined entities of leukemia/lymphomas which can sometimes
be confused with one another during routine microscopic eval-
uation are: B-cell chronic lymphocytic leukemia (CLL), man-
tle cell lymphoma (MCL) and follicle center cell lymphoma
(FCC) [46], [47]. These are small lymphoid lymphomas that
are known to be associated with bone marrow and/or periph-
eral blood involvement during the course of the disease or at
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the time of the diagnosis [48]. Depending on the clinical pre-
sentation, age, sex and peripheral blood counts of patients,
an accurate diagnosis may prove difficult when only a limited
amount of specimen is available for ancillary studies such as
flow cytometry, karyotyping, fluorescence in-situ hybridization
(FISH), polymerase chain reaction (PCR) or reverse transcrip-
tase polymerase chain reaction (RT-PCR). The tremendous ef-
fort undertaken to subtype these disorders is driven by the med-
ical community’s desire to identify improved treatment proto-
cols and therapy options [41], [42].

Recent literatures [43], [44], [45] ascribe much of the dif-
ficulty in rendering consistent diagnoses to subjective impres-
sions of observers and show that, when morphological cell clas-
sification is based upon computer aided analysis, both objec-
tivity and reproducibility improve. An image guided decision
support (IGDS) system [16], [18] based on the mean-shift clus-
tering algorithm [17] was recently developed to provide assis-
tance to technicians and physicians when they are confronted
with detecting and discriminating among CLL, MCL, FCC, and
benign cells. The IGDS enables individuals to submit unclas-
sified imaged cells from local or remote computers and robotic
microscopes to search engines, which automatically analyze the
query and retrieve those digitized imaged cells and correlated
data (protein/molecular studies) from the "ground-truth" data-
bases which exhibit the most similar features. The most prob-
able diagnosis is provided based upon the majority logic of the
ranked retrievals.

While the performance of the first generation of IGDS proto-
type showed promising results, it exhibited several limitations:
1) populating the “ground-truth” database was a tedious, time-
consuming task. A more automated system would be required
to facilitate data collection; 2) while the mean-shift segmen-
tation algorithm used in the first generation of IGDS system
could accurately segment cells into multiple subregions, this
approach, like many other low level image segmentation ap-
proaches, often over-segmented cells; 3) the original image seg-
mentation algorithm used in the first generation of IGDS only
addressed the segmentation of the nucleus, although the cyto-
plasm also contains important information, which can be useful
in improving classification performance.

In an attempt to improve the recognition accuracy and auto-
mate cellular segmentation, this paper focuses on developing a
reliable and unsupervised approach which could facilitate accu-
rate unsupervised segmentation of both the cytoplasm and the
nucleus. A screen-shot of the new IGDS system is shown in
Figure 1. The left panel is the image database system. Autho-
rized users can review, search, and apply content-based image
retrieval operations on the "ground truth" database using this in-
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Fig. 1. The user interface of the image guided decision support (IGDS) system. The left panel is the user interface of the new "ground-truth" image database
system. The right panel shows the user interface of the new image segmentation and indexing system.

terface. The right panel shows the new image segmentation and
indexing system. Different image segmentation algorithms, in-
cluding our proposed robust color GVF snake, are implemented
in JAVA and C++. In the current experiments, All imaged cells
in the “ground-truth” database were segmented using these al-
gorithms for comparision.

II. IMAGE SEGMENTATION

Image segmentation is the process of delineating an image
into "homogeneous" regions based on the similarity of pixel
attributes. Active contour models, or snakes, have gained
significant attention and become popular image segmentation
methods after their first introduction by Kass, Witkin and Ter-
zopoulus [1]. Snakes are curves defined within the image’s do-
main and driven by the internal forces within the curve and the
external forces derived from the image data. There are mainly
two general types of active contour models described in the lit-
erature: parametric active contours [1] and geometric active
contours [8], [7], [9], [49]. Parametric active contour models
are widely used in many applications, including edge detec-
tion [1], object recognition [4], [5], shape modeling [5], [2]
and motion tracking [4], [6], to mention only a few. The im-
age gradients can be used as the external forces in parametric
active contour models. Examples include the traditional snake
[10], [11], the balloon snake [12], the pressure forces model
[13] and the gradient vector flow (GVF) model [14], [15]. Geo-
metric active contour models, or geodesic snakes, were almost
simultaneously proposed by Caselles et al. [9] and by Malladi
et al. [49] to address the fact that parametric active contour
models can not resolve topological changes. Geodesic snakes

are based on the theory of curve evolution and are numerically
implemented using level sets. They can automatically manage
topology changes in an image and allow for multiple simultane-
ous boundary estimations. However, due to their computational
complexity, their speed of convergence is slower than paramet-
ric snakes.

In our applications, the pre-processing steps of IGDS system
automatically selects regions of interest (ROI) [16], which [18]
contains the object cell. In each ROI, there are no topologi-
cal changes because there is only one object of interest in each
field. In addition, since the speed of convergence is an impor-
tant issue in our application, parametric active contour models
were selected in the development of new IGDS system. The
GVF snake often outperforms other gradient-based models be-
cause of its insensitivity to initial positions and larger capture
region. However, it is best suited for binary or gray-level im-
ages as cited in the literature review above rather than chromat-
ically stained pathology specimens. Simply transforming color
images into gray-level images without using color gradients, or
using color gradients and then directly applying the GVF snake
do not provide satisfactory results. In this paper, we propose a
robust color GVF snake model which combines robust estima-
tion and color gradients. The proposed algorithm was shown
to be effective in solving the real world problem of segmenting
stained pathology specimens.

The remainder of the paper is organized as follows. Section 2
introduces the requisite background information concerning ac-
tive contour models. In Section 3, we introduce the L2E robust
estimation and the newly developed robust color GVF snake.
Section 4A provides the experimental results of the L2E robust
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estimation. Section 4B compares the robust color GVF snake
with the Fisher linear discriminant approach (FLD), the original
GVF snake, the watershed algorithm derived from mathemati-
cal morphology, and the mean-shift clustering algorithm used
in the prototype IGDS subsystem. Section 5 provides the con-
clusion and future directions.

III. PARAMETRIC ACTIVE CONTOUR MODEL

A traditional snake is parametrically defined as x(s) =
(x(s), y(s)), where x(s) and y(s) are x and y coordinates along
the contour and s represents the arc-length with value in [0, 1],
to minimize an energy function

Esnake =

Z 1

0

(Eint(x(s)) +Eext(x(s)))ds (1)

where the first term represents the internal energy defined as

Eint(x(s)) = (α |xs(s)|2 + β |xss(s)|2)/2 (2)

where xs(s) is the first derivative of x(s) and xss(s) is the sec-
ond derivative of x(s) with respect to s. The external energy is
defined as

Eext(x(s)) = −γ
¯̄
∇
©
Gσ(x,y) ∗ f(x, y)

ª¯̄
(3)

where f is the original image, Gσ(x,y) is the two dimensional
Gaussian kernel with σ as standard deviation.

The goal of the computation is to find the local minima of
Esnake defined in (1). Based on the Euler-Lagrange principle,
equation (1) has a minimum when

αxss(s)− βxssss(s)−∇Eext(x(s)) = 0 (4)

where xss(s) and xssss(s) are the second and fourth derivatives
of the curve with respect to the parameter s.

In order to find the solution for (4), the snake is made dy-
namic by defining x as the function of time t and s

xt(s, t) = αxss(s, t)− βxssss(s, t)−∇Eext(x(s, t)). (5)

The solution to (5) can be achieved by solving the discrete equa-
tions iteratively.

To effectively lead the snakes into concave region, Xu
and Prince [14] proposed a new external force. According
to Helmholtz theorem [19], rewriting (5) and replacing the
−∇Eext(x(s)) with Θ

xt(s, t) = αxss(s, t)− βxssss(s, t) +Θ (6)

where Θ is the gradient vector flow defined as Θ(x, y) =
[u(x, y), v(x, y)] that minimizes the energy functional

Ψ =

Z Z
µ(u2x + u2y + v2x + v2y)dxdy

+(
¯̄
∇
©
Gσ(x,y) ∗ f(x, y)

ª¯̄2 ·¯̄
Θ−∇

©
Gσ(x,y) ∗ f(x, y)

ª¯̄2
)dxdy (7)

where ∇
©
Gσ(x,y) ∗ f(x, y)

ª
is the gradient of the input

image f(x, y) after Gaussian smoothing with variance σ

and mean 0. Equation (7) is dominated by u2x + u2y +

v2x + v2y when
¯̄
∇
©
Gσ(x,y) ∗ f(x, y)

ª¯̄
is small. When¯̄

∇
©
Gσ(x,y) ∗ f(x, y)

ª¯̄
is large, the second term dominates the

integrand and is minimized when Θ = ∇
©
Gσ(x,y) ∗ f(x, y)

ª
.

This result keeps Θ nearly equal to the gradient of the edge
when the snake is near the object, while enabling the snake to
move towards the edges when it is far away from the object.

IV. UNSUPERVISED IMAGE SEGMENTATION USING
ROBUST COLOR GVF SNAKE

A. Color Gradient in Luv Color Space

In gray-level images, the gradient is defined as the first deriv-
ative of the image luminance. It has a high value in those re-
gions exhibiting high luminance contrast. However, this strat-
egy is not suitable for color images. Simply transforming color
images into gray-level image by taking the average of three
channels and applying the gray-level image gradient operator
do not provide satisfactory results in our applications.

In this paper, we adopt the definition of gradients for color
images [22], [23], [24]. In contrast to previous approaches, we
define the color gradient in Luv color space rather than RGB
color space because Euclidean metrics and distances are per-
ceptually uniform in Luv color space, which is not the case in
RGB color space [23].

Let Γ(x, y) : R3 be a color image, based on classical Rie-
mannian geometry results [21], the L2 norm can be written in
matrix form

dΓ2 =

∙
dx
dy

¸T ∙
g11 g12
g21 g22

¸ ∙
dx
dy

¸
(8)

where g11 = [∂Γ∂x ]
2, g12 = g21 =

∂Γ
∂x

∂Γ
∂y , g22 = [

∂Γ
∂y ]

2.
The quadratic form (8) achieves its extrema changing rates in

the directions of the eigenvectors of matrix [gi,j ] , i = 1, 2, j =
1, 2 and the changing magnitude is decided by its eigenvalues
λ+ and λ−. In our approach, we select

p
λ+ − λ− [23], [50]

to define the color gradient

∇Θ =
p
λ+ − λ− (9)

where

g11 =

⎡⎢⎣
¯̄
∂L
∂x

¯̄2¯̄
∂u
∂x

¯̄2¯̄
∂v
∂x

¯̄2
⎤⎥⎦ g22 =

⎡⎢⎢⎢⎢⎣
¯̄̄
∂L
∂y

¯̄̄2¯̄̄
∂u
∂y

¯̄̄2¯̄̄
∂v
∂y

¯̄̄2
⎤⎥⎥⎥⎥⎦ (10)

g12 = g21 =

⎡⎢⎢⎢⎣
¯̄̄
∂2L
∂x∂y

¯̄̄¯̄̄
∂2u
∂x∂y

¯̄̄¯̄̄
∂2v
∂x∂y

¯̄̄
⎤⎥⎥⎥⎦ (11)

where L, u, v correspond to the three channels in Luv color
space.
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B. L2E Robust Estimation
In the previous section, we defined the color gradient in Luv

color space in order to replace the gray level gradient of the
original GVF snake. Although the capture range of original
GVF snake is large, it still may fail to find the edges of the ob-
ject when given unsuitable initial positions. For example, to
capture the boundary of a circular object the initial snake must
include the center of the circle [34]. Another potential difficulty
relates to computational complexity. Given an initial location
far away from the object, the original GVF snake may take a
long time to converge to the edges of the object. Other chal-
lenges arise from the diversity and complexity of the images
under study. The current "ground-truth" database of the IGDS
system contains 1791 imaged cells corresponding to 58 differ-
ent cases collected from three different institutions (University
of Pennsylvania School of Medicine, University of Medicine
and Dentistry of New Jersey, and City of Hope National Med-
ical Center). There were obvious variations in the staining char-
acteristics of specimens which had been introduced by differ-
ences in the manufacturers of dyes, choices in selecting au-
tomated stainers and overall intensity variations. All of these
variables led to variations in shadowing, shading, contrasts and
highlighting cues. In addition, many of the specimens also con-
tained artifacts (flattened and crushed cells; debris) which had
unintentionally been introduced during specimen preparation.
Because of these challenges, it was necessary to introduce a ro-
bust nucleus and cytoplasm classifier which could reject "out-
liers" and provide accurate estimations of initial positions.

One of the common approaches used to resolve this sort of
classification problem is the least square (LS) approach. Define
the image classification model as

g = Fw + e (12)

where F is the sample image, a m×3matrix with m= w ·h as
the total pixels in the image, w is the width of the image and h
is the height of the image. Applying orthogonal principles, we
obtain the least square solution

w = (FTF)−1FTg. (13)

By choosing g as 1 and -1 to denote the background and the
object, respectively, LS provides a least square solution to the
classification problem.

A total least square (TLS) performs better by minimizing
the error between both g, bg and F, bF. The weights w are
given by the right singular vector corresponding to the small-
est eigenvalue of the singular value decomposition (SV D) of£
F g

¤
, which is the stacked data of input image F and out-

put image g. It can be shown [39, p.83] that the solution is

w = − vn+1(1 : n)
vn+1(n+ 1)

(14)

where vn+1 corresponding to the right singular vector of the
smallest singular value.

BecauseL2 norm is sensitive to outliers, neitherLS nor TLS
are robust estimators. In order to address the outliers and vari-
abilities of the images, L2E robust estimation and training have
been proposed. By merging training and L2E robust estimation

Fig. 2. The estimation results using least square (LS), total least square
(TLS) and L2E for a linear regression problem of a dataset containing out-
liers.

with color GVF snake, the segmentation accuracy improved
significantly, while simultaneously saving computation time. In
order to obtain a robust estimation of the initial locations of
the nucleus and cytoplasm of cells without being affected by
outliers, we adopt a statistically robust matching criteria based
on the minimization of the integral squared error (ISE) also
known as L2E between a Gaussian model of the residual and
the true density function of the residual. It was shown in Scott
[25], [26], [27] that minimum distance estimators, including the
L2E, are inherently robust without requiring the specification
of tuning parameters.

Figure 2 is a linear regression example showing the capacity
of L2E robust estimation to reject outliers. One can easily see
that the LS and TLS are perturbed by the outliers on the left
upper side of Figure 2, marked with a rectangle, while the L2E
based fit has successfully rejected the outliers.

In (12), the residual e is assumed to be composed of indepen-
dent, identically distributed random variables, whose distribu-
tion will be modeled by a Gaussian with mean 0 and variance
σ. Our goal is to minimize the integrated square error (ISE) or
L2E error measurement given by

ISE (bθ) = Ebθ
Z
[g(e|bθ)− h(e|θ)]2de (15)

where g(·) is the Gaussian function modeling the density of the
residual error, bθ and θ are the estimation parameter and the true
parameter respectively, and h is the true unknown density of the
residual error term. Ebθ (·) denotes the estimate of the integral.
Considering minimizing an estimate of ISE with respect to θ:

bθ = argminbθ Ebθ
Z
[g(e|bθ)− h(e|θ)]2de

= argminbθ [Ebθ
Z

g2(e|bθ)de− 2Ebθ Z g(e|bθ)h(e|θ)de
+Ebθ

Z
h2(e|θ)de]. (16)
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The third term h2(·) is independent of bθ and can be omit-
ted from the minimization. The first term in the expansion is
Ebθ R g2(·)de and can be evaluated in closed form. The sec-
ond term is −2Ebθ R g(e|bθ)h(e|θ)de with Ebθ [g(·)] being the
expectation of g(·) with respect to bθ. The following Rudemo’s
unbiased estimator can be used for the second term [33]

− 2
m

mX
i=1

g(ei|θ) for i = 1, ..,m (17)

where m = w · h denotes the total number of pixels. Thus,
the minimization using the L2E criterion for normal density is
given by

bθL2E = arg min
θ=[σ,w]

"
1

2
√
πσ
− 2
m

mX
i=1

exp

Ã
−kg −Fwk

2

2σ2

!#
(18)

The numerical solution is calculated by applying the gradient
descant algorithm to equation (18). For readers who are inter-
ested in robust estimators, we should point out that L2E robust
estimation has many useful applications, such as image regis-
tration [28], computer latency and workload prediction [29], ap-
plied statistics [32], [33] and data mining [31] .

C. Image Segmentation Approaches
In this subsection, several state of the art approaches, such

as Fisher linear discriminant (FLD) classification, watershed
image segmentation and mean-shift robust clustering algorithm
are reviewed and the proposed robust color GVF snake is de-
scribed in detail. Experiments comparing the performance of
these algorithms with the robust color GVF snake follow in the
next section.

1) Fisher Linear Discriminant: One of the common ap-
proaches in pattern recognition is FLD (Fisher linear discrimi-
nant) [59]. FLD can also be used in image segmentation prob-
lem by treating segmentation as classification. If we form a
linear combination of the pixels Pij ∈ F, we obtained a scalar
dot product

g = Fw (19)
and a corresponding set of gij ∈ g divided into subsets g1
and g2, which correspond to the objects of interests and back-
ground, respectively. FLD is the algorithm used to maximize
the ratio of between-class scatter to within-class scatter. Sup-
pose we have p as a 3-dimensional vector that belongs to F.
For a binary classification problem, where c = {D1,D2}, the
result can be immediately determined forw

w =S−1w (m1−m2) (20)

where

Sw =
2X
i=1

X
p∈Di

(p−mi)(p−mi)
T (21)

where m = 1
n

P
p∈c p is the total mean vector and mi =

1
ni

P
x∈Di

x is the ith within-class mean vector, ni denotes the
number of pixels in class Di. The result is the same as LS in
this special case. For those who are interested in the details, we
refer the readers to [37, p. 243].

2) Watershed: Another popular image segmentation algo-
rithm is the watershed transform [51]. This algorithm is de-
rived from the field of mathematical morphology. The term
watershed refers to a ridge that divides areas drained by differ-
ent river systems. A catchment basin is the geographical area
draining into a river or reservoir. The gradients of the image are
used to compute watershed transform and therefore the catch-
ment basin boundaries are located on the maximum gradient
points.

A thorough review of different definitions and implementa-
tions of the watershed transform can be found in [52]. In our ex-
periments, we adopted the watershed definition based on topo-
graphical distance applied to discrete images. Let F be an orig-
inal image. The lower slope LS(p) of F at a pixel p, is defined
as the maximal slope linking p to any of its neighbors of lower
altitude.

LS(p) = max
q∈NG(p)∪p

F(p)−F(q)
d(p,q)

(22)

where NG(p) is the set of neighbors of pixel p on the grid
G, and d(p,q) is the Euclidean distance between two pixels p
and q. The corresponding definition of lower neighbors and
topographical distance can be found in [52].

The watershed in the original form often produces an over-
segmentation of images. Many small catchment basins are pro-
duced due to the large number of local minima in the input
image. Several improved marker-based watershed algorithms
[54], [55], [56] have been proposed to remedy this issue. The
basic idea behind the marker-based segmentation is to trans-
form the input image in such a way that the watershed of the
transformed image corresponds to meaningful object bound-
aries. The technique for filtering the image is the marker im-
position [57] and is based on the morphological reconstruction
algorithm [58]. In our experiments, both the original watershed
algorithm using Vincent-Soille algorithm [53] and the marker-
based watershed algorithm [57] are implemented for compari-
son with the robust color GVF snake.

3) Mean-shift Robust Clustering: Mean-shift algorithm is
a general nonparametric technique proposed for clustering of
a complex multi-model feature space [17]. It randomly tessel-
lates the space with search windows and moves the windows
until convergence is achieved at the nearest mode of the under-
lying probability distribution.

In our implementation, the RGB input vectors are first con-
verted into Luv vectors through a nonlinear transformation to
produce a perceptually uniform Euclidean distances and met-
rics. A set of m points x1, ...xm called the sample set are then
randomly selected from the data with the radius of a searching
sphere Sh(x). The mean-shift procedure is then applied to each
point in the sample set. The mean-shift vector at the point x is
defined as [38, p. 534]:

Mh(x) =
1

nx

X
xi∈Sh(x)

xi − x (23)

where nx is the number of data points contained in the search-
ing sphere Sh(x). It can be shown that the vector has the direc-
tion of the gradient density estimate ∇̂f(x)
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Mh(x) =
h2

5

∇̂f(x)bf(x) (24)

where the kernel is defined as

KE(x) =

½
5
2c
−1
3 (1− xTx) if xTx ≤ 1

0 otherwise (25)

where c3 is the volume of the unit sphere in the three-
dimensional space. Pointing towards the direction of maximum
increase in the density, recursive computation of the mean-shift
vector defines a path leading to the nearest mode of the den-
sity. For more details about mean-shift algorithm, please refer
to [17].

4) Robust Color GVF Snake: Now we describe the design
and development of the robust color GVF snake. Rewriting
equation (6) and replacing the original GVF vector fieldΘ with
the new color GVF vector field Θ in Luv color space, we have

Esnake = αvss(s)− βvssss(s) +Θ (26)

where Θ is the color gradient vector flow defined as Θ(x, y) =
[u(x, y), v(x, y)] that minimizes the energy function defined in
equation (7).

In the robust color GVF snake, ∇ in equation (7) is the
Luv color gradient defined in equation (9). The two initial
snake contour locations are obtained from L2E robust estima-
tion and correspond to the boundaries of the nucleus and the
cytoplasm respectively. By applying calculus of variations, it
can be shown that minimizing the integral in equation (7) is
equal to solve the following equation

µ∇2u− (u− fx)(f
2
x + f2y ) = 0 (27)

µ∇2v − (v − fy)(f
2
x + f2y ) = 0. (28)

The numerical solution to (27) and (28) can be solved by treat-
ing u and v as functions of time and solving

ut(x, y, t) = µ∇2u(x, y, t)−
(u(x, y, t)− fx(x, y)) ∗
(f2x(x, y) + f2y (x, y)) (29)

vt(x, y, t) = µ∇2v(x, y, t)−
(v(x, y, t)− fy(x, y)) ∗
(f2x(x, y) + f2y (x, y)). (30)

In order to set up an iterative solution, let the indices i, j and
n correspond to x, y, and t will be derived from the iterative
algorithm for (29) and (30).

The steps associated with the automatic segmentation, index-
ing and archiving of the IGDS system using robust color GVF
snake are as follows:

1) The pathologist selects an imaged cell from the data set
for training.

2) The training image is mapped from RGB color space to
Luv color space.

3) L2E robust estimation is first used to separate the imaged
specimen into object Yo and background Yb. The parame-
ters are recorded as wcytoplasm. The object Yo contains
the nucleus and cytoplasm of the cells. The cytoplasm of
the cells, as a general rule, surrounds the nucleus, there-
fore, this step is actually the initial estimation of cyto-
plasm contour. The cytoplasm of the cell and the back-
ground are roughly separated in the same step. The L2E
robust estimation is then applied within the roughly de-
lineated object region Yo and separated it into cytoplasm
C and nucleus N . This step roughly separates the cy-
toplasm and nucleus regions to denote the initial guess
of the nuclear contour. The parameters are recorded as
wnucleus.

4) Both wcytoplasm and wnucleus are applied to process all
the cells from a given case and the resulting contours are
used as the initial positions to start the double robust color
GVF snakes. Because the initial positions are close to the
accurate positions, they can converge quickly and provide
clear, inherently connected and smooth contours.

5) In the current stage of development, the segmentation re-
sults are displayed for pathologists to review before ac-
tually becoming part of the "ground-truth" database. The
cell image, the geometrical features of the cells, the mask
of nucleus and cytoplasm, the texture features of the cells
and the cytoplasm/nucleus ratios are used to generate a
record and indexed into the database for future query.

V. EXPERIMENTAL RESULTS

In the experiments, pathologists were asked to confirm the
segmentation results for a mixed set of 58 lymphoproliferative
cases. The cell types included a mix set of mantle cell lym-
phoma (MCL), chronic lymphocytic leukemia (CLL), follicu-
lar center cell lymphoma (FCC)) and normal (BENIGN). The
imaged cells were collected from Hospital of the University of
Pennsylvania, Philadelphia, PA, Robert Wood Johnson Univer-
sity Hospital, New Brunswick, NJ, and City of Hope National
Medical Center, Duarte, CA.

The slides were prepared using standard peripheral blood
collection techniques wherein a drop of blood is placed on
the glass slide and smeared in a thin film by using an auto-
matic slide maker. The smear is then air-dried and stained
with Wright-Giemsa stain using the usual staining protocol for
hematology specimens with mixtures of basic (methylene blue
derivatives) and acid dyes (usually eosin). According to the
number of acid and basic groups present, cell components take
up the dyes from the mixture in various proportions. Differ-
ent cells were stained with different hues depending on their
composition (in proteins, amino acids, enzymes, etc.). How-
ever, for a particular cell type the staining quality is generally
maintained.

The test platform for the experiments consisted of an Intel-
based workstation interfaced with a high-resolution Olympus
DP70 camera equipped with 12-bit color depth on each color
channel and 1.45 million pixel effective resolution. The system
also includes a single 2/3 inch CCD digital camera, an Olympus
AX70 microscope equipped with a Prior 6-way robotic stage,
motorized objective turret and a magnification changer.
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Fig. 3. The estimation results of the initial locations of the cytoplasm and
nucleus of a Follicular Center Cell Lymphoma (FCC) image. (a) The "ground-
truth" contours delineated by human experts. (b) Estimation results using least
square (LS). (c) Estimation results using total least square (TLS). (d) Estima-
tion results using L2E robust estimation.

A. Experimental Results of L2E Robust Estimation.

In this section, we first present the comparative results of the
L2E robust estimation, LS and TLS. In every row of Figure
3, the first image is the original image and the second is the
image with the estimated initial contours imposed on it. The
next two images in the same row are the estimated contours of
the nucleus and the cytoplasm. Figure 3a shows the "ground-
truth" contours delineated by human experts. The outer contour
is the curve that surrounds the cytoplasm. The inner contour
corresponds to the nuclear region. Figure 3b, c, and d show the
initial positions of the contours calculated based on LS, TLS
and L2E robust estimation, respectively.

Evaluated from the preprocessing results, the L2E robust es-
timation provides the most accurate estimation results when
compared with the LS and TLS. To quantify the difference
between the true boundaries M and the estimation results S,
the segmentation accuracy rates are defined as

ε =
A(S) ∪A(M)−A(S) ∩A(M)

A(M)
∗ 100% (31)

where A(M) and A(S) are the areas that enclosed within M
and S. ε is CAR (cytoplasm accuracy rate) or NAR (nucleus
accuracy rate).

Figure 4 illustrates the average error ration of CAR and
NAR for LS, TLS and L2E robust estimation. If there are
no outliers in the image, all methods exhibit the same results
with about 85% estimation accuracy. As the ratio of outliers in-
creases, L2E robust estimation provides a stable and low error
rate, which is more robust than LS and TLS.
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Fig. 4. The relationship between the estimation accuracy of least square (LS),
total least square (TLS), L2E robust estimation and the number of outliers in
the image.
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Fig. 5. The relationship between the estimation accuracy and the number of
imaged cells used in the training set.

The next set of experiments were performed to determine
whether the number of training images impacted the estima-
tion accuracy rates. Figure 5 shows the relationship between
the number of training images and average estimation accuracy
rates. No significant benefits were observed by increasing the
size of the training set. This is probably due to the fact that
images originated from a given case exhibit similar imaging
conditions and reflection properties. Based upon the result of
the pilot study, pathologists were asked to choose only a single
representative image from each case for training.

B. Segmentation Results of Robust Color GVF Snake
In this section, the experimental results are presented for

studies comparing the performance of several state of the art im-
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Fig. 6. The segmentation results of (a) Follicular Center Cell Lymphoma (FCC) applying (b) Fisher Linear Discriminant (FLD). (c) Unsupervised mean-shift
algorithm. (d) Unsupervised traditional watershed algorithm. (e) Unsupervised maker based watershed algorithm. (f) Supervised mean-shift algorithm after region
merging. (g) Original GVF snake. (h) Robust color GVF snake.

age segmentation algorithms and the robust color GVF snake.
In Figure 6, the performance of the newly proposed robust color
GVF snake is compared with the FLD (Fisher Linear Discrim-
inant), the watershed segmentation algorithms, the mean-shift
clustering algorithm used in the prototype of the IGDS system
and the original GVF snake. Figure 6a is a FCC cell image with
the nucleus and the cytoplasm. Figure 6b shows the segmenta-
tion results of FLD. The unsupervised segmentation results
using mean-shift algorithm was shown in Figure 6c. Figure 6d
shows the results of the original watershed algorithm. Figure
6e shows the results of the improved marker-based watershed
algorithm. The supervised segmentation results of mean-shift
after region merging through human interventions are shown
in Figure 6f. The segmentation result of running the original
GVF snake in RGB color space after 175 iterations is shown in
Figure 6g. The proposed robust color GVF snake operating in
Luv color space converges to the objects in just 20 iterations,
as shown in Figure 6h.

The results show that the traditional GVF snake, while quite
useful for it original intended purpose, is not effective in seg-
menting the hematopathology images without modification.
Using the traditional approach may lead the snake converge to
locations exhibiting highest luminance, i.e., the red blood cells
which should be classified as background for our purpose. At
the same time, this approach requires longer time to converge
than other methods. FLD provides unacceptable segmenta-
tion results because the linear discriminant is not suitable for
separating non-linear separable datasets. The mean-shift algo-
rithm segmented every sub-region accurately including even the

most pronounced concave region. However, to achieve accu-
rate results as illustrated in Figure 6f, human intervention is re-
quired for manually adjusting parameters and merging the over-
segmented regions. The original watershed algorithm overseg-
mented the image into a myriad of small regions rendering its
impractical usage for the application at hand. One of the main
contributing factors leading to the oversegmentation is the fact
that all of the images in our application exhibit high texture vari-
ations throughout both the nucleus and the cytoplasm. Marker
based watershed algorithms [54], [55], [56] have been proposed
to resolve oversegmentation problems. In our experiments it did
reduce the number of oversegmented regions significantly but
still required region merging to provide useful results. Achiev-
ing unsupervised region merging is not trivial because it is not
easy to find a general criterion to decide which regions should
be merged and which should not. For example, two separate
small regions, even if they have similar pixel values, may ac-
tually belong to a single object or multiple objects. There is
some recent research which focus on the region merging prob-
lem [57], [60]. Aside from the difficulty presented by overseg-
mentation, the contours delineated by the watershed approach
are not as smooth as those produced using robust color GVF
snake. In our experiments, the robust color GVF snake pro-
vided the most accurate segmentation results while maintaining
smooth boundaries.

An advantage of using L2E robust estimation is the signifi-
cant improvement in the speed of convergence. The current sys-
tem is running with Java sdk 1.4.3 on a PC with an Intel 2.4G
processor and 512-MB RAM. It took 47 seconds to preprocess
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Fig. 7. The image segmentation results applying robust color GVF snake on four different types of cells: (a) Follicular Center Cell Lymphoma (FCC). (b) Mantle
Cell Lymphoma (MCL). (c) Chronic Lymphocytic Leukemia (CLL). (d) Normal Cells (BENIGN).

100 640×480 images while automatically selecting the region
of interest (ROI), each with the dimension of around 180×180.
ROI selection was the first step for every segmentation algo-
rithm used in the experiments. After this step, It took 43 sec-
onds to segment both the nucleus and cytoplasm of the 100 im-
aged cells using the robust color GVF snake, compared to 245
seconds using original GVF snake, 73 seconds with mean-shift
algorithm, 98 seconds using marker based watershed algorithm
and 28 seconds applying Fisher linear discriminant (FLD). Al-
though FLD provides the fastest speed, its segmentation re-
sults are unacceptable for our purpose. The robust color GVF
snake provided the fastest speed of convergence among these
methods while providing accurate segmentation results.

Figure 7 shows segmentation results using the robust color
GVF snake to segment different types of cells. In each row,
the first image is the original image and the second is the initial
positions calculated by L2E robust estimation. The next two
images in the same row show iterative intermediate results (af-

ter 5 and 10 iterations, respectively) while the last image is the
final output (after 20 iterations). Figure 7a shows a typical FCC
(Follicular Center Cell Lymphoma) cell. While each disorder
under study exhibited a spectrum of morphologies, FCC cells
tend to exhibit pronounced cleaves in the nucleus and relatively
small quantities of cytoplasm. Figure 7b shows a MCL (Man-
tle Cell Lymphoma), which has a small cleave in the cell and
almost no cytoplasm. Figure 7c shows CLL (Chronic Lympho-
cytic Leukemia), which is similar to previous MCL example
but contains more cytoplasm. Figure 7d shows a normal cell
(BENIGN), which has a relatively larger cytoplasm and reg-
ularly shaped nucleus. Figure 8 shows some results of more
difficult cell cases using robust color GVF snake, where (a),
(c) are original images and (b), (d) exhibit corresponding seg-
mentation results. Some images exhibit very weak differences
between cytoplasm and background. Some images have com-
plex texture or even several different color regions within the
cytoplasm.
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(a) (b) (c) (d)(a) (b) (c) (d)

Fig. 8. Additional image segmentation experimental results applying robust color GVF snake: (a), (c) are the original images. (b), (d) are the corresponding
segmentation results.
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Fig. 9. The experimental results (a) The data distribution of the "ground-truth" database with 4 cell types, 58 specimen cases and 1791 images. (b) The average
segmentation error rates of 4 different cell types, 58 specimen cases and 1791 cell images in the "ground-truth" database using robust color GVF snake and
supervised mean-shift clustering algorithm, respectively.



IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. , NO. , JUNE 2005 11

Table1: The comparative segmentation results of unsupervised robust color GVF snake and supervised mean-shift algorithm

The nuclear segmentation accuracy ratio based on robust color GVF snake (SNAR).
The cytoplasm segmentation accuracy ratio based on robust color GVF snake (SCAR).
The nuclear segmentation accuracy ratio based on supervised mean-shift algorithm (MNAR).
The cytoplasm segmentation accuracy ratio based on supervised mean-shift algorithm (MCAR).

Cell
Type

Number of 
Cases

Number of 
Images

SNAR SCAR MNAR MCAR

FCC 9 315 91.20 89.57 92.12 87.32

MCL 18 543 90.09 87.92 91.03 89.89

CLL 16 397 93.56 91.83 93.19 90.73

Benign 15 536 97.10 92.94 96.04 94.98

Table1: The comparative segmentation results of unsupervised robust color GVF snake and supervised mean-shift algorithm

The nuclear segmentation accuracy ratio based on robust color GVF snake (SNAR).
The cytoplasm segmentation accuracy ratio based on robust color GVF snake (SCAR).
The nuclear segmentation accuracy ratio based on supervised mean-shift algorithm (MNAR).
The cytoplasm segmentation accuracy ratio based on supervised mean-shift algorithm (MCAR).

Cell
Type

Number of 
Cases

Number of 
Images

SNAR SCAR MNAR MCAR

FCC 9 315 91.20 89.57 92.12 87.32

MCL 18 543 90.09 87.92 91.03 89.89

CLL 16 397 93.56 91.83 93.19 90.73

Benign 15 536 97.10 92.94 96.04 94.98

Cell
Type

Number of 
Cases

Number of 
Images

SNAR SCAR MNAR MCAR

FCC 9 315 91.20 89.57 92.12 87.32

MCL 18 543 90.09 87.92 91.03 89.89

CLL 16 397 93.56 91.83 93.19 90.73

Benign 15 536 97.10 92.94 96.04 94.98

Cell
Type
Cell
Type

Number of 
Cases
Number of 
Cases

Number of 
Images
Number of 
Images

SNARSNAR SCARSCAR MNARMNAR MCARMCAR

FCCFCC 99 315315 91.2091.20 89.5789.57 92.1292.12 87.3287.32

MCLMCL 1818 543543 90.0990.09 87.9287.92 91.0391.03 89.8989.89

CLLCLL 1616 397397 93.5693.56 91.8391.83 93.1993.19 90.7390.73

BenignBenign 1515 536536 97.1097.10 92.9492.94 96.0496.04 94.9894.98

In the next set of experiments, we compared the performance
for all 58 cases within the "ground-truth" database - 9 cases
of FCC (total of 315 cell images), 18 cases of MCL (total of
543 images), 15 cases of Benign (total of 536 cell images) and
16 cases of CLL (total of 397 cell images). We limited the
comparative performance studies to one of the supervised al-
gorithms and unsupervised robust color GVF snake in order
to determine how closely the unsupervised approach compared
with the supervised segmentation results. In the experiment,
the supervised mean-shift segmentation results are obtained af-
ter post-processing is performed to merge oversegmented sub-
regions within the image.

Table 1 provides the error rates of the segmentation results
obtained from the unsupervised robust color GVF snake and the
supervised mean-shift algorithm. The database used for these
studies contained around 100 images per case with 2 cases hav-
ing only 10 images. For each case, single imaged cell was se-
lected as the training image. The nuclear and the cytoplasm seg-
mentation accuracy ratios were calculated based on the remain-
ing imaged cells in the same data set. MNAR is the mean-shift
nucleus segmentation accuracy ratio and MCAR denotes the
mean-shift cytoplasm segmentation accuracy ratio. Similarly,
SNAR and SCAR, defined in equation (31), are the nucleus
and cytoplasm segmentation accuracy ratios using robust color
GVF snake, respectively. The distribution of the cases in the
database is listed in Figure 9 (a) and the average of these four
error measurements for all the cell images in the "ground-truth"
database are graphically shown in Figure 9 (b).

From these sets of experiments, it was shown that the unsu-
pervised robust color GVF snake provided comparable segmen-
tation results with those achieved using the supervised mean-
shift algorithm which requires considerable human interven-
tion. The unsupervised segmentation results of color GVF
snake were deemed satisfactory by a panel of experts while sig-
nificantly accelerating the rate of processing and decreasing the
workload introduced by supervised approaches.

VI. CONCLUSION

The results of the robust color GVF snake were obtained by
exploiting prior-knowledge of the specific application. In this

particular microscopy application, there are two regions of in-
terest: the nuclei and the cytoplasm with the cytoplasm of the
cells, as a general rule, surrounding the nucleus. Therefore, the
robust color GVF snake, like many other high-level image seg-
mentation approaches, is tuned to provide a reliable means for
segmenting imaged hematopathology specimens. The mean-
shift algorithm and watershed segmentation algorithms, on the
other hand, provide a general solution applicable to a wider
range of image segmentation problems since they rely exclu-
sively on pixel attributes. It should be emphasized that through-
out our studies, the pixel-based strategies consistently gave rise
to oversegmented images which required considerable human
intervention to achieve desired results. Watershed algorithms
do however offer the potential of resolving issues related to
touching cells. We are currently investigating how best to incor-
porate this desirable feature while avoiding the stated overseg-
mentation problem. The watersnake [61] approach belongs to
this class of algorithms and by introducing the snake’s smooth-
ing energy into the watershed it is able to provide watershed
based segmentation results exhibiting smooth contours with
less oversegmented regions. Another set of interesting and ef-
fective approaches are active contours without edges [65] or its
more general model, the region based snakes [62], [63], [64].
Region based snakes offer insensitivity to initialization and can
be made computationally efficient for practical use. Combin-
ing region based snakes and robust estimation is a potentially
promising area for exploration that we plan to pursue as our ex-
periments move toward the analysis of imaged tissues in which
there are few distinct edges.

Although L2E robust estimation is a new powerful tool
which has attracted interests throughout the research commu-
nity in statistics [30], [32], [31], to our knowledge, it has not
been used in conjunction with active contours for image seg-
mentation. By merging L2E robust estimation with the GVF
snake and using an Luv color gradient, we have developed a
quick, robust approach which was shown to produce reliable
results for detecting and delineating the boundaries of imaged
cells. Since the robust color GVF snake was able to provide sat-
isfactory performance even when confronted with images ex-
hibiting weak contrast and subtle edges, we have begun to in-
vestigtate the use of parallel, robust color GVF snakes for eval-
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uating tissue microarrays.
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